skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Turner, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 14, 2026
  2. The intersection between the Mid-Atlantic Ridge and Iceland hotspot provides a natural laboratory where the composition and dynamics of Earth's upper mantle can be observed. Plume-ridge interaction drives variations in the melting regime, which result in a range of crustal types, including a series of V-shaped ridges (VSRs) and V-shaped troughs (VSTs) located south of Iceland. Mantle upwelling beneath Iceland dynamically supports regional bathymetry and may lead to changes in the height of oceanic gateways, which in turn control the flow of deep water on geologic timescales. This expedition recovered basaltic samples from crust that is blanketed by thick sediments, that also contain climatic and oceanic records from modern to earliest Oligcene/late Eocene times. Major, trace, and isotope geochemistry of basalts from this expedition provide insight into spatial and temporal variations in mantle melting processes. These samples will enable testing of the hypothesis that the Iceland plume thermally pulses on two timescales (5–10 and ~30 Ma), leading to fundamental changes in crustal architecture. This idea will be tested against alternative hypotheses involving propagating rifts and buoyant mantle upwelling. Millennial-scale paleoclimate records are contained in the rapidly accumulated sediments of contourite drifts cored during Expedition 395. The accumulation rate of these sediments is a proxy for current strength, which is moderated by dynamic support of oceanic gateways such as the Greenland-Scotland Ridge. These sediments also provide constraints for climatic events including Miocene and Pliocene warmth, the intensification of Northern Hemisphere glaciation, and abrupt Late Pleistocene climate change. The integrated approach of Expedition 395 allows the relationships between deep Earth processes, ocean circulation, and climate to be explored. These objectives were addressed by recovering sediment and basement cores from four sites, plus an additional two sites which were completed during Expeditions 384 and 395C (U1555 and U1563). Two sites (U1554 and U1562) are located in Björn drift above a VSR/VST pair, and another site targeted the Holocene–Eocene sequence of sediments at Eirik drift, located on the eastern Greenland margin (U1602). The fourth site of Expedition 395 (U1564) is located on 32.4 My-old oceanic crust that is devoid of V-shaped features, and was chosen because it intersects the Holocene to Oligo–Miocene sedimentary sequence of Gardar drift. Considered together, the sediments, basalts and vast array of measurements collected during Expedition 395 will provide a major advance in our understanding of mantle dynamics and the linked nature of Earth's interior, oceans, and climate. 
    more » « less
  3. The intersection between the Mid-Atlantic Ridge and Iceland hotspot provides a natural laboratory where the composition and dynamics of Earth’s upper mantle can be observed. Plume-ridge interaction drives variations in the melting regime, which result in a range of crustal types, including a series of V-shaped ridges and V-shaped troughs south of Iceland. Expedition 395 has three objectives: (1) to test contrasting hypotheses for the formation of V-shaped ridges, (2) to understand temporal changes in ocean circulation and explore connections with plume activity, and (3) to reconstruct the evolving chemistry of hydrothermal fluids with increasing crustal age and varying sediment thickness and crustal architecture. After being postponed from summer 2020 due to the COVID-19 pandemic, the drilling objectives of Expedition 395 were partially completed without a science party on board during Expedition 395C in summer 2021, when basalt cores were collected at four sites (U1554, U1555, U1562, and U1563). Sediment cores were collected from these sites, as well as from Site U1564, and casing was installed to 602 meters below seafloor at Site U1554. Expedition 395 is scheduled with sufficient time to complete the planned operations remaining at Sites U1564 and U1554, leaving approximately 22 operating days available for other sites, including a new proposed site, REYK-14B, which is located west of Reykjanes Ridge on the Eirik drift. This addendum provides the operations plan for rescheduled Expedition 395, including details of the additional site. 
    more » « less
  4. Free, publicly-accessible full text available May 1, 2026
  5. Abstract Gamma-ray binaries are luminous in gamma rays, composed of a compact object orbiting a massive companion star. The interaction between these two objects can drive relativistic outflows, either jets or winds, in which particles can be accelerated to energies reaching hundreds of teraelectronvolts (TeV). However, it is still debated where and under which physical conditions particles are accelerated in these objects and ultimately whether protons can be accelerated up to PeV energies. Among the well-known gamma-ray binaries, LS 5039 is a high-mass X-ray binary with an orbital period of 3.9 days that has been observed up to TeV energies by the High Energy Stereoscopic System. We present new observations of LS 5039 obtained with the High Altitude Water Cherenkov (HAWC) observatory. Our data reveal that the gamma-ray spectrum of LS 5039 extends up to 200 TeV with no apparent spectral cutoff. Furthermore, we confirm, with a confidence level of 4.7σ, that the emission between 2 and 118 TeV is modulated by the orbital motion of the system, and find a 2.2σhint of variability above 100 TeV. This indicates that these photons are likely produced within or near the binary orbit, where they can undergo absorption by the stellar photons. In a leptonic scenario, the highest energy photons detected by HAWC can be emitted by ∼200 TeV electrons inverse Compton scattering stellar photons, which would require an extremely efficient acceleration mechanism operating within LS 5039. Alternatively, a hadronic scenario could explain the data through proton–proton or proton–gamma collisions of protons accelerated to petaelectronvolt energies. 
    more » « less
    Free, publicly-accessible full text available July 10, 2026
  6. The five primary sites proposed for International Ocean Discovery Program (IODP) Expedition 395, which was postponed because of the COVID-19 pandemic, were cored during IODP Expedition 395C. The Expedition 395C operations, shipboard measurements, and sampling were adjusted to account for the absence of a sailing science party. The Expedition 395/395C objectives are (1) to investigate temporal variations in ocean crust generation at the Reykjanes Ridge and test hypotheses for the influence of Iceland mantle plume fluctuations on these processes, (2) to analyze sedimentation rates at the Björn and Gardar contourite drifts, as proxies for Cenozoic variations of North Atlantic deepwater circulation, and for uplift and subsidence of the Greenland-Scotland Ridge gateway related to plume activity, and (3) to analyze the alteration of oceanic crust and its interaction with seawater and sediments. During Expedition 395C, basalt cores were collected at four sites: U1554, U1555, U1562, and U1563. Sediment cores were also collected from these sites as well as from Site U1564, and casing was installed to 602 m at Site U1554. The amount of recovered cores, their preliminary descriptions, and the analyses of shipboard samples show that the results of Expedition 395C will fulfill a significant part of the Expedition 395 objectives. Basalts were collected from two V-shaped ridge and trough pairs, which will allow the investigation of the variability in mantle source and temperature causing this ridge/trough pattern. Basalt cores span an expected age range of 2.8–13.9 Ma, which will allow us to investigate the hydrothermal weathering processes. Sediments from the Björn drift were cored to basement, along with the uppermost 600 m of sediments from the Gardar drift. The data provided by Expedition 395C are a major advancement in achieving the work of Expedition 395. 
    more » « less
  7. This paper provides an overview of the MDaS S-STEM scholarship program. With the growing need for professionals with technology and critical thinking skills related to data analysis, the MDaS program employs established recruitment and retention activities for undergraduates in STEM fields, to encourage consideration of careers in data science related fields. The purpose of the program is to provide financial and professional support to low-income and underrepresented STEM students to improve their chances of completing degrees related to data science. This paper presents the motivation for the program, its goals, structure, research questions, and the design and implementation of its bootcamp cohort building component for engaging students. The results and experiences related to its first year of operation are presented. 
    more » « less
  8. Abstract The HAWC Observatory collected 6 yr of extensive data, providing an ideal platform for long-term monitoring of blazars in the very high energy (VHE) band, without bias toward specific flux states. HAWC continuously monitors blazar activity at TeV energies, focusing on sources with a redshift ofz≤ 0.3, based on the Third Fermi-LAT Catalog of High-Energy sources. We specifically focused our analysis on Mrk 421 and Mrk 501, as they are the brightest blazars observed by the HAWC Observatory. With a data set of 2143 days, this work significantly extends the monitoring previously published, which was based on 511 days of observation. By utilizing HAWC data for the VHEγ-ray emission in the 300 GeV–100 TeV energy range, in conjunction with Swift-XRT data for the 0.3–10 keV X-ray emission, we aim to explore potential correlations between these two bands. For Mrk 501, we found evidence of a long-term correlation. Additionally, we identified a period in the light curve where the flux was very low for more than 2 yr. On the other hand, our analysis of Mrk 421 measured a strong linear correlation for quasi-simultaneous observations collected by HAWC and Swift-XRT. This result is consistent with a linear dependence and a multiple-zone synchrotron self-Compton model to explain the X-ray andγ-ray emission. Finally, as suggested by previous findings, we confirm a harder-when-brighter behavior in the spectral evolution of the flux properties for Mrk 421. These findings contribute to the understanding of blazar emissions and their underlying mechanisms. 
    more » « less
    Free, publicly-accessible full text available February 5, 2026